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The relationship between fractional-order heat
conduction models and Boltzmann transport
equations (BTEs) lacks a detailed investigation.
In this paper, the continuity, constitutive and
governing equations of heat conduction are
derived based on fractional-order phonon BTEs. The
underlying microscopic regimes of the generalized
Cattaneo equation are thereafter presented. The
effective thermal conductivity κeff converges
in the subdiffusive regime and diverges in the
superdiffusive regime. A connection between
the divergence and mean-square displacement
〈|�x|2〉∼ tγ is established, namely, κeff ∼ tγ −1, which
coincides with the linear response theory. Entropic
concepts, including the entropy density, entropy flux
and entropy production rate, are studied likewise.
Two non-trivial behaviours are observed, including
the fractional-order expression of entropy flux and
initial effects on the entropy production rate. In
contrast with the continuous time random walk
model, the results involve the non-classical continuity
equations and entropic concepts.

This article is part of the theme issue ‘Advanced
materials modelling via fractional calculus: challenges
and perspectives’.

1. Introduction
The macroscopic description of heat conduction was
established by Fourier in the nineteenth century, which
formulates the heat flux q = q(x, t) in terms of the local

2020 The Author(s) Published by the Royal Society. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsta.2019.0280&domain=pdf&date_stamp=2020-05-11
http://dx.doi.org/10.1098/rsta/378/2172
mailto:caoby@tsinghua.edu.cn
http://orcid.org/0000-0003-3588-972X


2

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190280

...............................................................

temperature field T = T(x, t), namely
q + κ∇T = 0. (1.1)

In the above equation, the coefficient κ is termed thermal conductivity, which is an intrinsic
material property and should be independent of the geometrical parameters such as the system
size L. One general approach to predict the thermal conductivity is based on the linearized
Boltzmann transport equation (BTE) [1–3]. The following phonon BTE with the single-mode
relaxation time (SMRT) approximation [3] is a typical example:

∂f
∂t

+ vg · ∇f = f0 − f
τ

, (1.2)

where f = f (x, t, k) is the phonon distribution function, k denotes the wavevector, vg stands for
the phonon group velocity, τ is the relaxation time, f0 = 1/(exp(h̄ω/kBT) − 1) is the equilibrium
distribution, h̄ is the reduced Planck constant, ω is the angular frequency and kB is the Boltzmann
constant. In isotropic cases, equation (1.2) gives rise to the following prediction:

κ = 1
3

c|vg|l, (1.3)

with c the specific heat capacity per unit volume and l = |vg|τ the mean free path (MFP).
Furthermore, the BTE also predicts violations of Fourier’s Law when the characteristic size

and time are comparable to (or even smaller than) the MFP and relaxation time of heat carriers,
respectively. For instance, the equation of phonon radiative transfer (EPRT) [2] leads to a non-
Fourier relation between the one-dimensional (1D) heat flux qx and temperature difference �T:

qx = 1
1 + (4/3)Kn

(
1
3

c|vg|l
)

ΔT
L

, (1.4)

with Kn = l/L standing for the Knudsen number. The above equation implies a length-dependent
effective thermal conductivity κeff = κeff(L) in stationary problems, while non-Fourier behaviours
exist in non-stationary situations as well. For non-stationary heat conduction, the SMRT
approximation does not agree with Fourier’s Law rigorously but leads to the Cattaneo–Vernotte
(CV) model [4,5] as follows:

q + τ
∂q
∂t

= −κ∇T. (1.5)

Upon combining the above equation with the standard continuity equation,

∂e
∂t

= c
∂T
∂t

= −∇ · q, (1.6)

with e = e(x, t) the local energy density, one can acquire a hyperbolic governing equation for the
local temperature, namely

∂T
∂t

+ τ
∂2T
∂t2 = D∇2T, (1.7)

with D = κ/c denoting the thermal diffusivity. Equation (1.7) is able to avoid the infinite speed
of heat propagation traceable to the parabolic governing equation of Fourier’s Law. However, it
is likewise paired with some unsatisfactory features [6–10], i.e. the negative entropy production
rate and absolute temperature.

In the past decades, fractional-order generalizations of equations (1.5)–(1.7) have attracted
increasing interest [11–14]. Through introducing the fractional-order derivatives into the
constitutive and continuity equations, Compte & Metzler [11] proposed a class of temporal
fractional-order models termed generalized Cattaneo equations (GCEs). They also studied
the long-time and short-time asymptotic behaviours of the mean-square displacement (MSD).
Kosztołowicz & Lewandowska [12] applied the GCE class to the subdiffusive transport of
electrolytes, while Povstenko [13] introduced the spatial fractional-order derivative in the theories
of thermal stresses. The numerical solutions of these fractional-order generalizations have been
investigated likewise [14]. Since the standard CV model can be derived from the phonon BTE,
a natural question is: Can these fractional-order heat conduction models emerge from the
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phonon BTE or its generalizations? This question has not been much studied [15], and the
main aim of the present work is to address it. In this work, we show that fractional-order
continuity, constitutive and governing equations of heat conduction can be derived from the
fractional-order phonon BTEs. The underlying microscopic regimes of these models are thereafter
presented. The corresponding entropic concepts, including the entropy density, entropy flux and
entropy production rate, are also discussed. Different from other fractional-order approaches, the
fractional-order BTEs will give rise to several non-classical results. The present work will cover
the results of Li & Cao [15], but be more strict and complete in three aspects. First, the initial
value terms will be considered, which are neglected in [15]. Second, Li & Cao [15] only discuss
the entropic concepts for the Goychuk’s model, while this work will study other fractional-order
BTEs as well. Third, Li & Cao [15] do not distinguish the phonon relaxation time and dimension
parameter, which will be discussed in this work.

2. Constitutive and continuity equations
We first recall the relation between the distribution function and macroscopic thermodynamic
quantities. The local phonon energy density is given by

e =
∫

f h̄ω dk =
∫

f0h̄ω dk, (2.1)

while the heat flux is written as

q =
∫

vg f h̄ω dk =
∫

vg( f − f0)h̄ω dk. (2.2)

In the spirit of Nonnenmacher & Nonnenmacher [16], equation (1.2) can be generalized into
the following fractional-order form:

∂f
∂t

+ τ 1−α
α D1−α

t (vg · ∇f ) = τ 1−α
α D1−α

t

(
f0 − f

τ

)
, (2.3)

where α ∈ (0, 1) and τα > 0 is a constant parameter of dimension second. The temporal fractional-
order derivative D1−α

t is usually selected as the Riemann–Liouville (RL) operator on the right-
hand side:

D1−α
t = RL

0 D1−α
t f (x, t, k) = 1

Γ (α)
∂

∂t

∫ t

0

f (x, t′, k)

|t − t′|1−α
dt′. (2.4)

Upon multiplying equation (2.3) by h̄ω and integrating it over the wavevector space, we obtain

∂e
∂t

= c
∂T
∂t

=
∫

∂f
∂t

h̄ω dk

= −∇ ·
∫

(τα−1
α D1−α

t vg f )h̄ω dk

= −τ 1−α
α D1−α

t (∇ · q), (2.5)

which deviates from the standard continuity equation. Substituting equation (2.3) into
τ 1−α
α D1−α

t q/τ yields

τ 1−α
α D1−α

t q
τ

=
∫

vgτ 1−α
α D1−α

t

(
f − f0

τ

)
h̄ω dk

= −
∫

vg

[
∂f
∂t

+ τ 1−α
α D1−α

t (vg · ∇f )
]

h̄ω dk

= − ∂

∂t

(∫
vg f h̄ω dk

)
− τ 1−α

α D1−α
t

(∫
vgvg · ∇f h̄ω dk

)

= −∂q
∂t

− τ 1−α
α D1−α

t

∫
vgvg∇f h̄ω dk. (2.6)
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In order to establish a relationship between the heat flux and temperature distribution, we
shall assume local equilibrium, ∇f ∼= ∇f0. Equation (2.6) therefore becomes

τ
∂q
∂t

+ τ 1−α
α D1−α

t q = −τ 1−α
α D1−α

t (κ∇T), (2.7)

which reduces to the CV model as α = 1. We now focus on the governing equation of the local
temperature. Taking an integral τα−1

α Dα−1
t in equation (2.5) leads to

τα−1
α Dα−1

t

(
c
∂T
∂t

)
= −∇ · q + 1

tαΓ (1 − α)
[D−α

t (∇ · q)]|t=0, (2.8)

while the divergence of equation (2.7) reads

τ
∂

∂t
(∇ · q) + τ 1−α

α D1−α
t (∇ · q) = −τ 1−α

α D1−α
t (κ∇2T). (2.9)

Upon substituting equation (2.8) into equation (2.9), we can derive

ττα−1
α

(
Dα+1

t T + T|t=0

tα+1Γ (1 − α)

)
+ ατ [D−α

t (∇ · q)]|t=0
tα+1cΓ (1 − α)

+ ∂T
∂t

− [D−α
t (∇ · q)]|t=0

ctτα−1
α

= τ 1−α
α D1−α

t (D∇2T). (2.10)

Different from the integer-order models, equation (2.10) contains several initial value terms. In
the short-time limit t → 0, these initial value terms will cause singularities. In the long-time limit
t → +∞, these initial value terms tend to zero. If the initial value terms are neglected, it becomes

ττα−1
α Dα+1

t T + ∂T
∂t

= τ 1−α
α D1−α

t (D∇2T), (2.11)

which can be reformulated as

ττ 2α−2
α D2α

t T + τα−1
α Dα

t T = D∇2T. (2.12)

The above equation belongs to the GCE class if τ = τα , and, more precisely, it is nothing but
the GCE I [11]. It should be mentioned that the relaxation time τ and parameter τα possess
fundamentally different physical meanings: τα is paired with the fractional-order derivative,
which is necessary to guarantee the physical dimension; τ reflects the phonon scattering, and,
in more refined descriptions, it will depend on the angular frequency and wavevector, namely,
τ = τ (k, ω). Hence, it is not appropriate to equate τ to τα .

Note that in the work by Compte & Metzler [11], the GCE I arises from the following continuity
and constitutive equations, respectively:

cτα
α Dα

t T = −∇ · q (2.13)

and

q + τα
α Dα

t q = −κ∇T. (2.14)

The above equations will equal equations (2.5) and (2.7), respectively, when the initial value
terms are neglected. In the presence of the initial value terms, a strict derivation of equations (2.13)
and (2.14) should be based on the following BTE:

τα−1
α Dα

t f + vg · ∇f = f0 − f
τ

. (2.15)

Although both equations (2.3) and (2.15) can lead to the GCE I, their differences cannot be ignored.
There is no stationary solution for equation (2.15) because τα−1

α Dα
t f remains time-dependent

even if f is time-independent. The same problem also occurs in equation (2.14). It indicates that
stationary heat transport does not exist for equations (2.15) and (2.14), which is unsatisfactory. By
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contrast, a time-independent distribution function is able to fulfil equation (2.3) if it satisfies

vg · ∇f = f0 − f
τ

. (2.16)

This shows that equation (2.3) is equivalent to the standard BTE for stationary heat transport.
Accordingly, we suggest equation (2.3) rather than equation (2.15) as the BTE for the GCE I.
Correspondingly, equations (2.5) and (2.7) are better choices for the continuity and constitutive
equations than equations (2.13) and (2.14). In the limit τα → 0, equation (2.3) allows any
time-independent distribution functions, whereas the solution of equation (2.15) must satisfy
equation (2.16).

We now consider another fractional-order form given by Goychuk [17]:

∂f
∂t

+ vg · ∇f = τ 1−α
α D1−α

t

(
f0 − f

τ

)
. (2.17)

Using a similar derivation, one can find that the standard continuity equation is recovered, while
the constitutive relation is written as

τ
∂q
∂t

+ τ 1−α
α D1−α

t q = −κ∇T. (2.18)

Combining the continuity and constitutive equations yields

τ 1−α
α D2−α

t T + τ
∂2T
∂t2 = D∇2T + T|t=0τ

1−α
α

t2−αΓ (α − 1)
, (2.19)

which agrees with the GCE II with the initial value term neglected. In [11], the GCE II is a result
of the standard continuity equation and the following constitutive equation:

q + ττα−1
α Dα

t q = −τα−1
α Dα−1

t (κ∇T). (2.20)

The above equation can be derived from the following BTE:

τα−1
α Dα

t f + τα−1
α Dα−1

t (vg · ∇f ) = f0 − f
τ

. (2.21)

However, the above equation cannot recover the standard continuity equation rigorously. Upon
multiplying equation (2.21) by h̄ω and integrating it over the wavevector space, we arrive at

∫
[τα−1

α Dα
t f + τα−1

α Dα−1
t (vg · ∇f )]h̄ω dk

=
∫ [

τα−1
α Dα−1

t

(
∂f
∂t

+ vg · ∇f
)

+ f |t=0
tαΓ (1 − α)

]
h̄ω dk

= τα−1
α Dα−1

t

(
∂e
∂t

+ ∇ · q
)

+ e|t=0

tαΓ (1 − α)
. (2.22)

From equation (2.22), we can find that the standard continuity equation no longer holds unless
e|t=0 = 0. Accordingly, we suggest equation (2.17) rather than equation (2.21) as the BTE for the
GCE II.

The last case is that the temporal fractional-order derivative only appears in the drift term,
namely

∂f
∂t

+ τ 1−α
α D1−α

t (vg · ∇f ) = f0 − f
τ

. (2.23)

This fractional-order BTE will give rise to the same continuity equation as equation (2.5), while
the constitutive equation takes the following form:

τ
∂q
∂t

+ q = −τ 1−α
α D1−α

t (κ∇T). (2.24)
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The corresponding governing equation is given by

τα−1
α

[
Dα

t T + τDα+1
t T + (τ + t)T|t=0

tα+1Γ (1 − α)

]
+ ατ [D−α

t (∇ · q)]|t=0
tα+1cΓ (1 − α)

− [D−α
t (∇ · q)]|t=0
tαcΓ (1 − α)

= τ 1−α
α D1−α

t (D∇2T). (2.25)

In the absence of the initial value terms, equation (2.25) can be transformed into the GCE III.
In [11], the GCE III arises from the standard CV model and equation (2.13). The standard
CV model should correspond to the standard BTE, which likewise gives rise to the standard
continuity equation. Thus, the derivation in [11] is invalid in phonon heat transport, and we
suggest equations (2.5) and (2.24) as the continuity and constitutive equations for the GCE
III. The foundation of the above generalized BTEs can be related to the fractional variational
principles [18].

3. Discussion on non-Brownian exponent
The GCE class describes anomalous diffusion, which is characterized by the long-time
asymptotics of the MSD, 〈|�x|2〉 ∼ tγ . The range of the non-Brownian exponent γ is commonly
classified into five subranges: hyperdiffusion, γ > 2; ballistic motion, γ = 2; superdiffusion,
1 < γ < 2; normal diffusion, γ = 1; and subdiffusion, 0 < γ < 1. According to the result by
Compte & Metzler [11], γ = α ∈ (0, 1) for the GCEs I and III, while for the GCE II, γ = 2 − α ∈ (1, 2).
It indicates that the GCEs I and III correspond to subdiffusive heat conduction, while the GCE II
is for superdiffusive heat conduction. For the two constitutive equations of the GCE I, equations
(2.3) and (2.14), a time-independent temperature distribution will give rise to a convergent
heat flux as t → +∞, which is true for the GCE III as well. In contrast to the GCEs I and III,
the two constitutive equations for the GCE II, equations (2.18) and (2.20), predict a power-law
divergence q ∼ t1−α as t → +∞. These results imply convergent effective thermal conductivity
in the subdiffusive regime and divergent effective thermal conductivity in the superdiffusive
regime, which is consistent with existing understandings of anomalous heat diffusion [19–22].
Specifically, there is a connection between the divergence and non-Brownian exponent, namely

q ∼ t1−α = tγ−1 ⇒ κeff ∼ tγ−1. (3.1)

The above equation has been demonstrated in the framework of the linear response theory [19],
which is likewise supported by numerical calculations [23–27]. In the short-time limit t → 0,
singularities will occur in the initial value terms, which can be eliminated via replacing the RL
operator with other non-singular derivatives [28,29]. It should be mentioned that we here neglect
the anomalies traceable to the standard case with α = 1, which has been widely discussed in
existing investigations [30–34].

4. Entropic concepts
In this section, we will investigate three entropic concepts based on the above BTEs, including
the entropy density s = s(x, t), entropy flux J = J(x, t) and entropy production rate σ = σ (x, t). We
mention that there exists careful discussion [35] on the entropic definitions in fractional-order heat
conduction, yet the underlying microscopic regimes have not been investigated. The relation of
these entropic concepts is expressed by the entropy balance equation as follows:

∂s
∂t

= −∇ · J + σ . (4.1)

In phonon heat transport, the entropy density is formulated as

s = kB

∫
[( f + 1) ln( f + 1) − f ln f ] dk, (4.2)
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whose derivative is given by

∂s
∂t

= kB

∫
∂f
∂t

[ln( f + 1) − ln f ] dk. (4.3)

In the near-equilibrium region, | f − f 0| = o( f 0), the entropy density coincides with the classical
irreversible thermodynamics [36]:

∂s
∂T

= kB

∫
∂f
∂T

ln
f + 1

f
dk

≈ kB

∫
∂f0
∂T

ln
f0 + 1

f0
dk = kB

∫
∂f0
∂T

h̄ω

kBT
dk

= 1
T

∫
∂f0
∂T

h̄ω dk = c
T

⇒ s =
∫

c dT
T

. (4.4)

Through substituting equation (2.3) into equation (4.3), we can obtain

∂s
∂t

= kB

∫ (
ln

f + 1
f

)
τ 1−α
α D1−α

t

(
f0 − f

τ
− vg · ∇f

)
dk. (4.5)

In the standard case, the term containing ( f0 − f )/τ corresponds to the entropy production rate,
while the term containing (vg · ∇f ) emerges from the entropy flux. Therefore, we have

∇ · J = kB

∫ (
ln

f + 1
f

)
τ 1−α
α D1−α

t (vg · ∇f ) dk (4.6)

and

σ = kB

∫ (
ln

f + 1
f

)
τ 1−α
α D1−α

t

(
f0 − f

τ

)
dk. (4.7)

Specifically, equation (4.6) can be simplified as an explicit form if α = 1, namely

J = kB

∫
vg[( f + 1) ln( f + 1) − f ln f ] dk. (4.8)

We now approximate the entropy flux and entropy production rate in the near-equilibrium
region. Using the approximation ln f + 1/f ≈ ln f0 + 1/f0 = h̄ω/kBT in equation (4.6), we obtain

∇ · J ≈ kB

∫
h̄ω

kBT
τ 1−α
α D1−α

t (vg · ∇f ) dk

= 1
T

τ 1−α
α D1−α

t

[
∇ ·

(∫
vg f h̄ω dk

)]
= 1

T
τ 1−α
α D1−α

t (∇ · q), (4.9)

and substituting equation (4.9) into equation (4.1) leads to σ ≈ 0. It means that σ is a higher-order
small quantity of o(| f − f 0|). For equation (2.15), equation (4.6) is still valid, while the entropy
production rate is given by

σ = kB

∫
ln

f + 1
f

[
τ 1−α
α D1−α

t

(
f0 − f

τ

)
+ (Dα−1

t f )|t=0
Γ (α − 1)t2−α

]
dk. (4.10)

Equation (4.10) shows that the initial effects will also contribute to the entropy production rate.
The macroscopic approximation of the entropy flux remains (4.9), yet the entropy production rate
is approximated by

σ ≈ (Dα−1
t e)|t=0

TΓ (α − 1)t2−α
> 0. (4.11)

For equation (2.17), the entropy flux is equation (4.8), while the entropy production reads

σ = kB

∫
ln

f + 1
f

(
f0 − f

τ

)
dk. (4.12)
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The corresponding first-order approximations coincide with classical irreversible thermodynamics,
namely

J ≈ q
T

(4.13)

and

σ ≈ q · ∇
(

1
T

)
. (4.14)

For equation (2.21), the entropy flux obeys equation (4.8), and the entropy production rate
is given by equation (4.10). Correspondingly, the entropy flux and entropy production rate are
approximated by equations (4.12) and (4.11), respectively. For equation (2.23), equations (4.6) and
(4.12) still hold, while the macroscopic approximations are the same as the approximations for
equation (2.3).

5. Conclusion
Fractional-order continuity and constitutive equations of heat conduction are derived based on
fractional-order phonon BTEs. The fractional-order governing equations are then established, and
in the absence of the initial value terms, these governing equations will agree with the GCE
class. The underlying microscopic regimes of these models are thereafter presented, namely, the
memory effects in phonon transport.

The effective thermal conductivity converges in the subdiffusive regime and diverges in the
superdiffusive regime, which agrees with existing understandings of anomalous heat diffusion.
A connection between the divergence and non-Brownian exponent is observed, namely,
κeff ∼ tγ −1, which is consistent with the linear response theory. Such power-law divergences have
been widely observed in low-dimensional systems [24–27], and hence our models can be applied
to heat conduction in low-dimensional systems like one-dimensional momentum-conserving
lattices [26].

Three entropic concepts, i.e. the entropy density, entropy flux and entropy production rate, are
studied based on the fractional-order BTEs. Two non-trivial behaviours are found, namely, the
fractional-order relationship between the heat flux and entropy flux, and the initial effects on the
entropy production rate.

Compared with Denisov et al. [21], wherein the heat carriers are particles obeying the
continuous-time random walk model, this work focuses on heat conduction dominated by
phonons. In this work, the constitutive, continuity and governing equations are derived from
the fractional-order BTEs. However, Denisov et al. [21] assume the standard continuity equation,
and there is no rigorous constitutive relation between the heat flux and temperature distribution.
Furthermore, this work illustrates that the entropic concepts can deviate from the classical
formula, which is the basis of [21].
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